Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{231}\cdot5\sqrt{6}}{1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5\sqrt{1386} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5\cdot \sqrt{ 9 \cdot 154 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}5\cdot \sqrt{ 9 } \cdot \sqrt{ 154 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}5\cdot3 \sqrt{ 154 } \xlongequal{ } \\[1 em] & \xlongequal{ }15\sqrt{154}\end{aligned} $$ | |
| ① | Remove 1 from denominator. |
| ② | Factor out the largest perfect square of 1386. ( in this example we factored out $ 9 $ ) |
| ③ | Rewrite $ \sqrt{ 9 \cdot 154 } $ as the product of two radicals. |
| ④ | The square root of $ 9 $ is $ 3 $. |