Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{21}}{\sqrt{56}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{21}}{\sqrt{56}}\frac{\sqrt{56}}{\sqrt{56}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{14\sqrt{6}}{56} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{6}}{4}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{56}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{21} } \cdot \sqrt{56} = 14 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ \sqrt{56} } \cdot \sqrt{56} = 56 $$ |
| ③ | Divide both numerator and denominator by 14. |