Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{200}}{\sqrt{49}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{200}}{\sqrt{49}}\frac{\sqrt{49}}{\sqrt{49}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{70\sqrt{2}}{49} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 70 \sqrt{ 2 } : \color{blue}{ 7 } } { 49 : \color{blue}{ 7 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{10\sqrt{2}}{7}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{49}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{200} } \cdot \sqrt{49} = 70 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \sqrt{49} } \cdot \sqrt{49} = 49 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 7 } $. |