Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{2}}{4\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{2}}{4\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2}{8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 2 : \color{orangered}{ 2 } }{ 8 : \color{orangered}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{4}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{2} } \cdot \sqrt{2} = 2 $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{2} } \cdot \sqrt{2} = 8 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 2 } $. |