Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{2}\cdot(-6+\sqrt{2})}{1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-6\sqrt{2}+2}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-6\sqrt{2}+2\end{aligned} $$ | |
| ① | $$ \color{blue}{ \sqrt{2} } \cdot \left( -6 + \sqrt{2}\right) = \color{blue}{ \sqrt{2}} \cdot-6+\color{blue}{ \sqrt{2}} \cdot \sqrt{2} = \\ = - 6 \sqrt{2} + 2 $$ |
| ② | Remove 1 from denominator. |