Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{175}}{\sqrt{7}+\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{175}}{\sqrt{7}+\sqrt{2}}\frac{\sqrt{7}-\sqrt{2}}{\sqrt{7}-\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{35-5\sqrt{14}}{7-\sqrt{14}+\sqrt{14}-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{35-5\sqrt{14}}{5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{7-\sqrt{14}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}7-\sqrt{14}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{7}- \sqrt{2}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{175} } \cdot \left( \sqrt{7}- \sqrt{2}\right) = \color{blue}{ \sqrt{175}} \cdot \sqrt{7}+\color{blue}{ \sqrt{175}} \cdot- \sqrt{2} = \\ = 35- 5 \sqrt{14} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{7} + \sqrt{2}\right) } \cdot \left( \sqrt{7}- \sqrt{2}\right) = \color{blue}{ \sqrt{7}} \cdot \sqrt{7}+\color{blue}{ \sqrt{7}} \cdot- \sqrt{2}+\color{blue}{ \sqrt{2}} \cdot \sqrt{7}+\color{blue}{ \sqrt{2}} \cdot- \sqrt{2} = \\ = 7- \sqrt{14} + \sqrt{14}-2 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Divide both numerator and denominator by 5. |
| ⑤ | Remove 1 from denominator. |