Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{15}^3}{\sqrt{10}^3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{15\sqrt{15}}{10\sqrt{10}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{15\sqrt{15}}{10\sqrt{10}}\frac{\sqrt{10}}{\sqrt{10}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{75\sqrt{6}}{100} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{ 75 \sqrt{ 6 } : \color{blue}{ 25 } } { 100 : \color{blue}{ 25 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3\sqrt{6}}{4}\end{aligned} $$ | |
| ① | $$ \sqrt{15}^3 =
\sqrt{15} ^2 \cdot \sqrt{15} =
\lvert 15 \rvert \cdot \sqrt{15} =
15\sqrt{15} $$ |
| ② | $$ \sqrt{10}^3 =
\sqrt{10} ^2 \cdot \sqrt{10} =
\lvert 10 \rvert \cdot \sqrt{10} =
10\sqrt{10} $$ |
| ③ | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{10}} $$. |
| ④ | Multiply in a numerator. $$ \color{blue}{ 15 \sqrt{15} } \cdot \sqrt{10} = 75 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ 10 \sqrt{10} } \cdot \sqrt{10} = 100 $$ |
| ⑤ | Divide numerator and denominator by $ \color{blue}{ 25 } $. |