Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{140}}{1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{ \sqrt{ 4 \cdot 35 } }{ 1 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{ \sqrt{ 4 } \cdot \sqrt{ 35 } }{ 1 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2\sqrt{35}\end{aligned} $$ | |
| ① | Factor out the largest perfect square of 140. ( in this example we factored out $ 4 $ ) |
| ② | Rewrite $ \sqrt{ 4 \cdot 35 } $ as the product of two radicals. |
| ③ | The square root of $ 4 $ is $ 2 $. |