Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{12}-\sqrt{8}}{\sqrt{2}+\sqrt{12}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{12}-\sqrt{8}}{\sqrt{2}+\sqrt{12}}\frac{\sqrt{2}-\sqrt{12}}{\sqrt{2}-\sqrt{12}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{6}-12-4+4\sqrt{6}}{2-2\sqrt{6}+2\sqrt{6}-12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{6\sqrt{6}-16}{-10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{3\sqrt{6}-8}{-5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-3\sqrt{6}+8}{5}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}- \sqrt{12}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( \sqrt{12}- \sqrt{8}\right) } \cdot \left( \sqrt{2}- \sqrt{12}\right) = \color{blue}{ \sqrt{12}} \cdot \sqrt{2}+\color{blue}{ \sqrt{12}} \cdot- \sqrt{12}\color{blue}{- \sqrt{8}} \cdot \sqrt{2}\color{blue}{- \sqrt{8}} \cdot- \sqrt{12} = \\ = 2 \sqrt{6}-12-4 + 4 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{2} + \sqrt{12}\right) } \cdot \left( \sqrt{2}- \sqrt{12}\right) = \color{blue}{ \sqrt{2}} \cdot \sqrt{2}+\color{blue}{ \sqrt{2}} \cdot- \sqrt{12}+\color{blue}{ \sqrt{12}} \cdot \sqrt{2}+\color{blue}{ \sqrt{12}} \cdot- \sqrt{12} = \\ = 2- 2 \sqrt{6} + 2 \sqrt{6}-12 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Divide both numerator and denominator by 2. |
| ⑤ | Multiply both numerator and denominator by -1. |