Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{10}}{\sqrt{26}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{10}}{\sqrt{26}}\frac{\sqrt{26}}{\sqrt{26}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{65}}{26} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{65}}{13}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{26}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{10} } \cdot \sqrt{26} = 2 \sqrt{65} $$ Simplify denominator. $$ \color{blue}{ \sqrt{26} } \cdot \sqrt{26} = 26 $$ |
| ③ | Divide both numerator and denominator by 2. |