Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\sqrt{10}}{-\sqrt{5}+\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{10}}{-\sqrt{5}+\sqrt{3}}\frac{-\sqrt{5}-\sqrt{3}}{-\sqrt{5}-\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-5\sqrt{2}-\sqrt{30}}{5+\sqrt{15}-\sqrt{15}-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-5\sqrt{2}-\sqrt{30}}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ - \sqrt{5}- \sqrt{3}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \sqrt{10} } \cdot \left( - \sqrt{5}- \sqrt{3}\right) = \color{blue}{ \sqrt{10}} \cdot- \sqrt{5}+\color{blue}{ \sqrt{10}} \cdot- \sqrt{3} = \\ = - 5 \sqrt{2}- \sqrt{30} $$ Simplify denominator. $$ \color{blue}{ \left( - \sqrt{5} + \sqrt{3}\right) } \cdot \left( - \sqrt{5}- \sqrt{3}\right) = \color{blue}{- \sqrt{5}} \cdot- \sqrt{5}\color{blue}{- \sqrt{5}} \cdot- \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot- \sqrt{5}+\color{blue}{ \sqrt{3}} \cdot- \sqrt{3} = \\ = 5 + \sqrt{15}- \sqrt{15}-3 $$ |
| ③ | Simplify numerator and denominator |