Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{9\sqrt{48}}{3\sqrt{8}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{9\sqrt{48}}{3\sqrt{8}}\frac{\sqrt{8}}{\sqrt{8}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{72\sqrt{6}}{24} \xlongequal{ } \\[1 em] & \xlongequal{ }3\sqrt{6}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{8}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 9 \sqrt{48} } \cdot \sqrt{8} = 72 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ 3 \sqrt{8} } \cdot \sqrt{8} = 24 $$ |