Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{9\sqrt{2}}{4\sqrt{8}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{9\sqrt{2}}{4\sqrt{8}}\frac{\sqrt{8}}{\sqrt{8}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{36}{32} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 36 : \color{orangered}{ 4 } }{ 32 : \color{orangered}{ 4 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{9}{8}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{8}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 9 \sqrt{2} } \cdot \sqrt{8} = 36 $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{8} } \cdot \sqrt{8} = 32 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 4 } $. |