Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{9\sqrt{2}}{-25\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{9\sqrt{2}}{-25\sqrt{7}}\frac{\sqrt{7}}{\sqrt{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{9\sqrt{14}}{-175} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-\frac{9\sqrt{14}}{175}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{7}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 9 \sqrt{2} } \cdot \sqrt{7} = 9 \sqrt{14} $$ Simplify denominator. $$ \color{blue}{ - 25 \sqrt{7} } \cdot \sqrt{7} = -175 $$ |
| ③ | Place a negative sign in front of a fraction. |