Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{9+\sqrt{8}}{\sqrt{8}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{9+\sqrt{8}}{\sqrt{8}}\frac{\sqrt{8}}{\sqrt{8}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{18\sqrt{2}+8}{8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{9\sqrt{2}+4}{4}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{8}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 9 + \sqrt{8}\right) } \cdot \sqrt{8} = \color{blue}{9} \cdot \sqrt{8}+\color{blue}{ \sqrt{8}} \cdot \sqrt{8} = \\ = 18 \sqrt{2} + 8 $$ Simplify denominator. $$ \color{blue}{ \sqrt{8} } \cdot \sqrt{8} = 8 $$ |
| ③ | Divide both numerator and denominator by 2. |