Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{9}{4\sqrt{2}-2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{9}{4\sqrt{2}-2}\frac{4\sqrt{2}+2}{4\sqrt{2}+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{36\sqrt{2}+18}{32+8\sqrt{2}-8\sqrt{2}-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{36\sqrt{2}+18}{28}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 4 \sqrt{2} + 2} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 9 } \cdot \left( 4 \sqrt{2} + 2\right) = \color{blue}{9} \cdot 4 \sqrt{2}+\color{blue}{9} \cdot2 = \\ = 36 \sqrt{2} + 18 $$ Simplify denominator. $$ \color{blue}{ \left( 4 \sqrt{2}-2\right) } \cdot \left( 4 \sqrt{2} + 2\right) = \color{blue}{ 4 \sqrt{2}} \cdot 4 \sqrt{2}+\color{blue}{ 4 \sqrt{2}} \cdot2\color{blue}{-2} \cdot 4 \sqrt{2}\color{blue}{-2} \cdot2 = \\ = 32 + 8 \sqrt{2}- 8 \sqrt{2}-4 $$ |
| ③ | Simplify numerator and denominator |