Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{9}{2\sqrt{3}+2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{9}{2\sqrt{3}+2}\frac{2\sqrt{3}-2}{2\sqrt{3}-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{18\sqrt{3}-18}{12-4\sqrt{3}+4\sqrt{3}-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{18\sqrt{3}-18}{8}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 2 \sqrt{3}-2} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 9 } \cdot \left( 2 \sqrt{3}-2\right) = \color{blue}{9} \cdot 2 \sqrt{3}+\color{blue}{9} \cdot-2 = \\ = 18 \sqrt{3}-18 $$ Simplify denominator. $$ \color{blue}{ \left( 2 \sqrt{3} + 2\right) } \cdot \left( 2 \sqrt{3}-2\right) = \color{blue}{ 2 \sqrt{3}} \cdot 2 \sqrt{3}+\color{blue}{ 2 \sqrt{3}} \cdot-2+\color{blue}{2} \cdot 2 \sqrt{3}+\color{blue}{2} \cdot-2 = \\ = 12- 4 \sqrt{3} + 4 \sqrt{3}-4 $$ |
| ③ | Simplify numerator and denominator |