Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{8\sqrt{6}}{2\sqrt{10}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{8\sqrt{6}}{2\sqrt{10}}\frac{\sqrt{10}}{\sqrt{10}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{16\sqrt{15}}{20} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 16 \sqrt{ 15 } : \color{blue}{ 4 } } { 20 : \color{blue}{ 4 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{4\sqrt{15}}{5}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{10}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 8 \sqrt{6} } \cdot \sqrt{10} = 16 \sqrt{15} $$ Simplify denominator. $$ \color{blue}{ 2 \sqrt{10} } \cdot \sqrt{10} = 20 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 4 } $. |