Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{8}{\sqrt{50}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 8 }{\sqrt{ 50 }} \times \frac{ \color{orangered}{\sqrt{ 50 }} }{ \color{orangered}{\sqrt{ 50 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8\sqrt{50}}{50} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 8 \sqrt{ 25 \cdot 2 }}{ 50 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 8 \cdot 5 \sqrt{ 2 } }{ 50 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{40\sqrt{2}}{50} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 40 \sqrt{ 2 } : \color{blue}{ 10 } }{ 50 : \color{blue}{ 10 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{4\sqrt{2}}{5}\end{aligned} $$ | |
| ① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 50 }}$. |
| ② | In denominator we have $ \sqrt{ 50 } \cdot \sqrt{ 50 } = 50 $. |
| ③ | Simplify $ \sqrt{ 50 } $. |
| ④ | Divide both the top and bottom numbers by $ \color{blue}{ 10 }$. |