Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{8}{\sqrt{3}-6}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{8}{\sqrt{3}-6}\frac{\sqrt{3}+6}{\sqrt{3}+6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8\sqrt{3}+48}{3+6\sqrt{3}-6\sqrt{3}-36} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{8\sqrt{3}+48}{-33} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{8\sqrt{3}+48}{33}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3} + 6} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 8 } \cdot \left( \sqrt{3} + 6\right) = \color{blue}{8} \cdot \sqrt{3}+\color{blue}{8} \cdot6 = \\ = 8 \sqrt{3} + 48 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{3}-6\right) } \cdot \left( \sqrt{3} + 6\right) = \color{blue}{ \sqrt{3}} \cdot \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot6\color{blue}{-6} \cdot \sqrt{3}\color{blue}{-6} \cdot6 = \\ = 3 + 6 \sqrt{3}- 6 \sqrt{3}-36 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Place a negative sign in front of a fraction. |