Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{7\sqrt{8}}{\sqrt{32}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7\sqrt{8}}{\sqrt{32}}\frac{\sqrt{32}}{\sqrt{32}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{112}{32} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 112 : \color{orangered}{ 16 } }{ 32 : \color{orangered}{ 16 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{7}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{32}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 7 \sqrt{8} } \cdot \sqrt{32} = 112 $$ Simplify denominator. $$ \color{blue}{ \sqrt{32} } \cdot \sqrt{32} = 32 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 16 } $. |