Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{7\sqrt{275}}{1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}7\sqrt{275} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}7\cdot \sqrt{ 25 \cdot 11 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}7\cdot \sqrt{ 25 } \cdot \sqrt{ 11 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}7\cdot5 \sqrt{ 11 } \xlongequal{ } \\[1 em] & \xlongequal{ }35\sqrt{11}\end{aligned} $$ | |
| ① | Remove 1 from denominator. |
| ② | Factor out the largest perfect square of 275. ( in this example we factored out $ 25 $ ) |
| ③ | Rewrite $ \sqrt{ 25 \cdot 11 } $ as the product of two radicals. |
| ④ | The square root of $ 25 $ is $ 5 $. |