Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{7+\sqrt{3}}{3+\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7+\sqrt{3}}{3+\sqrt{5}}\frac{3-\sqrt{5}}{3-\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{21-7\sqrt{5}+3\sqrt{3}-\sqrt{15}}{9-3\sqrt{5}+3\sqrt{5}-5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{21-7\sqrt{5}+3\sqrt{3}-\sqrt{15}}{4}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 3- \sqrt{5}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 7 + \sqrt{3}\right) } \cdot \left( 3- \sqrt{5}\right) = \color{blue}{7} \cdot3+\color{blue}{7} \cdot- \sqrt{5}+\color{blue}{ \sqrt{3}} \cdot3+\color{blue}{ \sqrt{3}} \cdot- \sqrt{5} = \\ = 21- 7 \sqrt{5} + 3 \sqrt{3}- \sqrt{15} $$ Simplify denominator. $$ \color{blue}{ \left( 3 + \sqrt{5}\right) } \cdot \left( 3- \sqrt{5}\right) = \color{blue}{3} \cdot3+\color{blue}{3} \cdot- \sqrt{5}+\color{blue}{ \sqrt{5}} \cdot3+\color{blue}{ \sqrt{5}} \cdot- \sqrt{5} = \\ = 9- 3 \sqrt{5} + 3 \sqrt{5}-5 $$ |
| ③ | Simplify numerator and denominator |