Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{7+8\sqrt{2}}{9-4\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7+8\sqrt{2}}{9-4\sqrt{5}}\frac{9+4\sqrt{5}}{9+4\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{63+28\sqrt{5}+72\sqrt{2}+32\sqrt{10}}{81+36\sqrt{5}-36\sqrt{5}-80} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{63+28\sqrt{5}+72\sqrt{2}+32\sqrt{10}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}63+28\sqrt{5}+72\sqrt{2}+32\sqrt{10}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 9 + 4 \sqrt{5}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 7 + 8 \sqrt{2}\right) } \cdot \left( 9 + 4 \sqrt{5}\right) = \color{blue}{7} \cdot9+\color{blue}{7} \cdot 4 \sqrt{5}+\color{blue}{ 8 \sqrt{2}} \cdot9+\color{blue}{ 8 \sqrt{2}} \cdot 4 \sqrt{5} = \\ = 63 + 28 \sqrt{5} + 72 \sqrt{2} + 32 \sqrt{10} $$ Simplify denominator. $$ \color{blue}{ \left( 9- 4 \sqrt{5}\right) } \cdot \left( 9 + 4 \sqrt{5}\right) = \color{blue}{9} \cdot9+\color{blue}{9} \cdot 4 \sqrt{5}\color{blue}{- 4 \sqrt{5}} \cdot9\color{blue}{- 4 \sqrt{5}} \cdot 4 \sqrt{5} = \\ = 81 + 36 \sqrt{5}- 36 \sqrt{5}-80 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Remove 1 from denominator. |