Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{7}{\sqrt{76}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 7 }{\sqrt{ 76 }} \times \frac{ \color{orangered}{\sqrt{ 76 }} }{ \color{orangered}{\sqrt{ 76 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{7\sqrt{76}}{76} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 7 \sqrt{ 4 \cdot 19 }}{ 76 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 7 \cdot 2 \sqrt{ 19 } }{ 76 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{14\sqrt{19}}{76} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 14 \sqrt{ 19 } : \color{blue}{ 2 } }{ 76 : \color{blue}{ 2 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{7\sqrt{19}}{38}\end{aligned} $$ | |
| ① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 76 }}$. |
| ② | In denominator we have $ \sqrt{ 76 } \cdot \sqrt{ 76 } = 76 $. |
| ③ | Simplify $ \sqrt{ 76 } $. |
| ④ | Divide both the top and bottom numbers by $ \color{blue}{ 2 }$. |