Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{7}{3\sqrt{24}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7}{3\sqrt{24}}\frac{\sqrt{24}}{\sqrt{24}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{14\sqrt{6}}{72} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 14 \sqrt{ 6 } : \color{blue}{ 2 } } { 72 : \color{blue}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{7\sqrt{6}}{36}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{24}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 7 } \cdot \sqrt{24} = 14 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ 3 \sqrt{24} } \cdot \sqrt{24} = 72 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 2 } $. |