Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{7}{-\sqrt{34}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7}{-\sqrt{34}}\frac{\sqrt{34}}{\sqrt{34}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{7\sqrt{34}}{-34} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-\frac{7\sqrt{34}}{34}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{34}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 7 } \cdot \sqrt{34} = 7 \sqrt{34} $$ Simplify denominator. $$ \color{blue}{ - \sqrt{34} } \cdot \sqrt{34} = -34 $$ |
| ③ | Place a negative sign in front of a fraction. |