Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{7\sqrt{15}}{5\sqrt{48}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7\sqrt{15}}{5\sqrt{48}}\frac{\sqrt{48}}{\sqrt{48}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{84\sqrt{5}}{240} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 84 \sqrt{ 5 } : \color{blue}{ 12 } } { 240 : \color{blue}{ 12 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{7\sqrt{5}}{20}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{48}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 7 \sqrt{15} } \cdot \sqrt{48} = 84 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ 5 \sqrt{48} } \cdot \sqrt{48} = 240 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 12 } $. |