Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{6\sqrt{48}}{4\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{6\sqrt{48}}{4\sqrt{6}}\frac{\sqrt{6}}{\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{72\sqrt{2}}{24} \xlongequal{ } \\[1 em] & \xlongequal{ }3\sqrt{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 6 \sqrt{48} } \cdot \sqrt{6} = 72 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{6} } \cdot \sqrt{6} = 24 $$ |