Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{6\sqrt{3}}{\sqrt{28}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{6\sqrt{3}}{\sqrt{28}}\frac{\sqrt{28}}{\sqrt{28}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12\sqrt{21}}{28} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 12 \sqrt{ 21 } : \color{blue}{ 4 } } { 28 : \color{blue}{ 4 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3\sqrt{21}}{7}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{28}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 6 \sqrt{3} } \cdot \sqrt{28} = 12 \sqrt{21} $$ Simplify denominator. $$ \color{blue}{ \sqrt{28} } \cdot \sqrt{28} = 28 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 4 } $. |