Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{60}{\sqrt{6726}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 60 }{\sqrt{ 6726 }} \times \frac{ \color{orangered}{\sqrt{ 6726 }} }{ \color{orangered}{\sqrt{ 6726 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{60\sqrt{6726}}{6726} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 60 \sqrt{ 6726 } : \color{blue}{ 6 } }{ 6726 : \color{blue}{ 6 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{10\sqrt{6726}}{1121}\end{aligned} $$ | |
| ① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 6726 }}$. |
| ② | In denominator we have $ \sqrt{ 6726 } \cdot \sqrt{ 6726 } = 6726 $. |
| ③ | Divide both the top and bottom numbers by $ \color{blue}{ 6 }$. |