Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{6-\sqrt{14}}{4+\sqrt{14}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{6-\sqrt{14}}{4+\sqrt{14}}\frac{4-\sqrt{14}}{4-\sqrt{14}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{24-6\sqrt{14}-4\sqrt{14}+14}{16-4\sqrt{14}+4\sqrt{14}-14} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{38-10\sqrt{14}}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{19-5\sqrt{14}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}19-5\sqrt{14}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 4- \sqrt{14}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 6- \sqrt{14}\right) } \cdot \left( 4- \sqrt{14}\right) = \color{blue}{6} \cdot4+\color{blue}{6} \cdot- \sqrt{14}\color{blue}{- \sqrt{14}} \cdot4\color{blue}{- \sqrt{14}} \cdot- \sqrt{14} = \\ = 24- 6 \sqrt{14}- 4 \sqrt{14} + 14 $$ Simplify denominator. $$ \color{blue}{ \left( 4 + \sqrt{14}\right) } \cdot \left( 4- \sqrt{14}\right) = \color{blue}{4} \cdot4+\color{blue}{4} \cdot- \sqrt{14}+\color{blue}{ \sqrt{14}} \cdot4+\color{blue}{ \sqrt{14}} \cdot- \sqrt{14} = \\ = 16- 4 \sqrt{14} + 4 \sqrt{14}-14 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Divide both numerator and denominator by 2. |
| ⑤ | Remove 1 from denominator. |