Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{6}{\sqrt{612}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 6 }{\sqrt{ 612 }} \times \frac{ \color{orangered}{\sqrt{ 612 }} }{ \color{orangered}{\sqrt{ 612 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6\sqrt{612}}{612} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 6 \sqrt{ 36 \cdot 17 }}{ 612 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 6 \cdot 6 \sqrt{ 17 } }{ 612 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{36\sqrt{17}}{612} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 36 \sqrt{ 17 } : \color{blue}{ 36 } }{ 612 : \color{blue}{ 36 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{\sqrt{17}}{17}\end{aligned} $$ | |
| ① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 612 }}$. |
| ② | In denominator we have $ \sqrt{ 612 } \cdot \sqrt{ 612 } = 612 $. |
| ③ | Simplify $ \sqrt{ 612 } $. |
| ④ | Divide both the top and bottom numbers by $ \color{blue}{ 36 }$. |