Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{6}{-8+\sqrt{10}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{6}{-8+\sqrt{10}}\frac{-8-\sqrt{10}}{-8-\sqrt{10}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-48-6\sqrt{10}}{64+8\sqrt{10}-8\sqrt{10}-10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-48-6\sqrt{10}}{54} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-8-\sqrt{10}}{9}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ -8- \sqrt{10}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 6 } \cdot \left( -8- \sqrt{10}\right) = \color{blue}{6} \cdot-8+\color{blue}{6} \cdot- \sqrt{10} = \\ = -48- 6 \sqrt{10} $$ Simplify denominator. $$ \color{blue}{ \left( -8 + \sqrt{10}\right) } \cdot \left( -8- \sqrt{10}\right) = \color{blue}{-8} \cdot-8\color{blue}{-8} \cdot- \sqrt{10}+\color{blue}{ \sqrt{10}} \cdot-8+\color{blue}{ \sqrt{10}} \cdot- \sqrt{10} = \\ = 64 + 8 \sqrt{10}- 8 \sqrt{10}-10 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Divide both numerator and denominator by 6. |