Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{5\sqrt{3}}{\sqrt{3}\cdot2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5\sqrt{3}}{\sqrt{3}\cdot2}\frac{\sqrt{3}}{\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{15}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 15 : \color{orangered}{ 3 } }{ 6 : \color{orangered}{ 3 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{5}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 5 \sqrt{3} } \cdot \sqrt{3} = 15 $$ Simplify denominator. $$ \color{blue}{ 2 \sqrt{3} } \cdot \sqrt{3} = 6 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 3 } $. |