Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{5\sqrt{3}}{\sqrt{20}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5\sqrt{3}}{\sqrt{20}}\frac{\sqrt{20}}{\sqrt{20}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{10\sqrt{15}}{20} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{15}}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{20}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 5 \sqrt{3} } \cdot \sqrt{20} = 10 \sqrt{15} $$ Simplify denominator. $$ \color{blue}{ \sqrt{20} } \cdot \sqrt{20} = 20 $$ |
| ③ | Divide both numerator and denominator by 10. |