Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{5\sqrt{2}}{6\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5\sqrt{2}}{6\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{10}{12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 10 : \color{orangered}{ 2 } }{ 12 : \color{orangered}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{5}{6}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 5 \sqrt{2} } \cdot \sqrt{2} = 10 $$ Simplify denominator. $$ \color{blue}{ 6 \sqrt{2} } \cdot \sqrt{2} = 12 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 2 } $. |