Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{51}{\sqrt{187}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 51 }{\sqrt{ 187 }} \times \frac{ \color{orangered}{\sqrt{ 187 }} }{ \color{orangered}{\sqrt{ 187 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{51\sqrt{187}}{187} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 51 \sqrt{ 187 } : \color{blue}{ 17 } }{ 187 : \color{blue}{ 17 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3\sqrt{187}}{11}\end{aligned} $$ | |
| ① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 187 }}$. |
| ② | In denominator we have $ \sqrt{ 187 } \cdot \sqrt{ 187 } = 187 $. |
| ③ | Divide both the top and bottom numbers by $ \color{blue}{ 17 }$. |