Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{5}{\sqrt{624}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 5 }{\sqrt{ 624 }} \times \frac{ \color{orangered}{\sqrt{ 624 }} }{ \color{orangered}{\sqrt{ 624 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5\sqrt{624}}{624} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 5 \sqrt{ 16 \cdot 39 }}{ 624 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 5 \cdot 4 \sqrt{ 39 } }{ 624 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{20\sqrt{39}}{624} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 20 \sqrt{ 39 } : \color{blue}{ 4 } }{ 624 : \color{blue}{ 4 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{5\sqrt{39}}{156}\end{aligned} $$ | |
| ① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 624 }}$. |
| ② | In denominator we have $ \sqrt{ 624 } \cdot \sqrt{ 624 } = 624 $. |
| ③ | Simplify $ \sqrt{ 624 } $. |
| ④ | Divide both the top and bottom numbers by $ \color{blue}{ 4 }$. |