Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{5}{4\sqrt{155}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5}{4\sqrt{155}}\frac{\sqrt{155}}{\sqrt{155}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5\sqrt{155}}{620} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{155}}{124}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{155}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 5 } \cdot \sqrt{155} = 5 \sqrt{155} $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{155} } \cdot \sqrt{155} = 620 $$ |
| ③ | Divide both numerator and denominator by 5. |