Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4\sqrt{35}}{3\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4\sqrt{35}}{3\sqrt{7}}\frac{\sqrt{7}}{\sqrt{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{28\sqrt{5}}{21} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 28 \sqrt{ 5 } : \color{blue}{ 7 } } { 21 : \color{blue}{ 7 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{4\sqrt{5}}{3}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{7}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 4 \sqrt{35} } \cdot \sqrt{7} = 28 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ 3 \sqrt{7} } \cdot \sqrt{7} = 21 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 7 } $. |