Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4\sqrt{32}}{\sqrt{27}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4\sqrt{32}}{\sqrt{27}}\frac{\sqrt{27}}{\sqrt{27}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{48\sqrt{6}}{27} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 48 \sqrt{ 6 } : \color{blue}{ 3 } } { 27 : \color{blue}{ 3 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{16\sqrt{6}}{9}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{27}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 4 \sqrt{32} } \cdot \sqrt{27} = 48 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ \sqrt{27} } \cdot \sqrt{27} = 27 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 3 } $. |