Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4\sqrt{2}+3}{3\sqrt{3}+\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4\sqrt{2}+3}{4\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4\sqrt{2}+3}{4\sqrt{3}}\frac{\sqrt{3}}{\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4\sqrt{6}+3\sqrt{3}}{12}\end{aligned} $$ | |
| ① | Simplify numerator and denominator |
| ② | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}} $$. |
| ③ | Multiply in a numerator. $$ \color{blue}{ \left( 4 \sqrt{2} + 3\right) } \cdot \sqrt{3} = \color{blue}{ 4 \sqrt{2}} \cdot \sqrt{3}+\color{blue}{3} \cdot \sqrt{3} = \\ = 4 \sqrt{6} + 3 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{3} } \cdot \sqrt{3} = 12 $$ |