Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4\sqrt{25}}{4\sqrt{10}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4\sqrt{25}}{4\sqrt{10}}\frac{\sqrt{10}}{\sqrt{10}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{20\sqrt{10}}{40} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{10}}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{10}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 4 \sqrt{25} } \cdot \sqrt{10} = 20 \sqrt{10} $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{10} } \cdot \sqrt{10} = 40 $$ |
| ③ | Divide both numerator and denominator by 20. |