Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4\sqrt{2}}{\sqrt{50}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4\sqrt{2}}{\sqrt{50}}\frac{\sqrt{50}}{\sqrt{50}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{40}{50} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 40 : \color{orangered}{ 10 } }{ 50 : \color{orangered}{ 10 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{4}{5}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{50}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 4 \sqrt{2} } \cdot \sqrt{50} = 40 $$ Simplify denominator. $$ \color{blue}{ \sqrt{50} } \cdot \sqrt{50} = 50 $$ |
| ③ | Divide both the top and bottom numbers by $ \color{orangered}{ 10 } $. |