Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4\sqrt{2}}{3\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4\sqrt{2}}{3\sqrt{6}}\frac{\sqrt{6}}{\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8\sqrt{3}}{18} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 8 \sqrt{ 3 } : \color{blue}{ 2 } } { 18 : \color{blue}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{4\sqrt{3}}{9}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 4 \sqrt{2} } \cdot \sqrt{6} = 8 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ 3 \sqrt{6} } \cdot \sqrt{6} = 18 $$ |
| ③ | Divide numerator and denominator by $ \color{blue}{ 2 } $. |