Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4+\sqrt{6}}{5+\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4+\sqrt{6}}{5+\sqrt{3}}\frac{5-\sqrt{3}}{5-\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{20-4\sqrt{3}+5\sqrt{6}-3\sqrt{2}}{25-5\sqrt{3}+5\sqrt{3}-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{20-4\sqrt{3}+5\sqrt{6}-3\sqrt{2}}{22}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 5- \sqrt{3}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 4 + \sqrt{6}\right) } \cdot \left( 5- \sqrt{3}\right) = \color{blue}{4} \cdot5+\color{blue}{4} \cdot- \sqrt{3}+\color{blue}{ \sqrt{6}} \cdot5+\color{blue}{ \sqrt{6}} \cdot- \sqrt{3} = \\ = 20- 4 \sqrt{3} + 5 \sqrt{6}- 3 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \left( 5 + \sqrt{3}\right) } \cdot \left( 5- \sqrt{3}\right) = \color{blue}{5} \cdot5+\color{blue}{5} \cdot- \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot5+\color{blue}{ \sqrt{3}} \cdot- \sqrt{3} = \\ = 25- 5 \sqrt{3} + 5 \sqrt{3}-3 $$ |
| ③ | Simplify numerator and denominator |