Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4+5\sqrt{2}}{5-3\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4+5\sqrt{2}}{5-3\sqrt{3}}\frac{5+3\sqrt{3}}{5+3\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{20+12\sqrt{3}+25\sqrt{2}+15\sqrt{6}}{25+15\sqrt{3}-15\sqrt{3}-27} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{20+12\sqrt{3}+25\sqrt{2}+15\sqrt{6}}{-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{20+12\sqrt{3}+25\sqrt{2}+15\sqrt{6}}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 5 + 3 \sqrt{3}} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ \left( 4 + 5 \sqrt{2}\right) } \cdot \left( 5 + 3 \sqrt{3}\right) = \color{blue}{4} \cdot5+\color{blue}{4} \cdot 3 \sqrt{3}+\color{blue}{ 5 \sqrt{2}} \cdot5+\color{blue}{ 5 \sqrt{2}} \cdot 3 \sqrt{3} = \\ = 20 + 12 \sqrt{3} + 25 \sqrt{2} + 15 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ \left( 5- 3 \sqrt{3}\right) } \cdot \left( 5 + 3 \sqrt{3}\right) = \color{blue}{5} \cdot5+\color{blue}{5} \cdot 3 \sqrt{3}\color{blue}{- 3 \sqrt{3}} \cdot5\color{blue}{- 3 \sqrt{3}} \cdot 3 \sqrt{3} = \\ = 25 + 15 \sqrt{3}- 15 \sqrt{3}-27 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Place a negative sign in front of a fraction. |