Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{400}{\sqrt{337}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 400 }{\sqrt{ 337 }} \times \frac{ \color{orangered}{\sqrt{ 337 }} }{ \color{orangered}{\sqrt{ 337 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{400\sqrt{337}}{337}\end{aligned} $$ | |
| ① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 337 }}$. |
| ② | In denominator we have $ \sqrt{ 337 } \cdot \sqrt{ 337 } = 337 $. |