Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4}{\sqrt{7}-3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4}{\sqrt{7}-3}\frac{\sqrt{7}+3}{\sqrt{7}+3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4\sqrt{7}+12}{7+3\sqrt{7}-3\sqrt{7}-9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4\sqrt{7}+12}{-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{4\sqrt{7}+12}{2}\end{aligned} $$ | |
| ① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{7} + 3} $$. |
| ② | Multiply in a numerator. $$ \color{blue}{ 4 } \cdot \left( \sqrt{7} + 3\right) = \color{blue}{4} \cdot \sqrt{7}+\color{blue}{4} \cdot3 = \\ = 4 \sqrt{7} + 12 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{7}-3\right) } \cdot \left( \sqrt{7} + 3\right) = \color{blue}{ \sqrt{7}} \cdot \sqrt{7}+\color{blue}{ \sqrt{7}} \cdot3\color{blue}{-3} \cdot \sqrt{7}\color{blue}{-3} \cdot3 = \\ = 7 + 3 \sqrt{7}- 3 \sqrt{7}-9 $$ |
| ③ | Simplify numerator and denominator |
| ④ | Place a negative sign in front of a fraction. |